Randomized Control Trials

Md Moshi Ul Alam

April 1, 2025 Clark University

(Recap) Treatment effects: Potential Outcomes and selection bias

Treatment D_i for each unit *i* with outcome Y_i

We observe only one of the two potential outcomes $Y_i(0)$ or $Y_i(1)$

We do not observe the counterfactual for each unit which leads to selection bias

ATT = $E[Y_i(1) - Y_i(0) | D_i = 1]$ cannot be estimated directly from the data

We showed that observed differences between groups = ATT + Selection bias

Selection bias

$$E[Y_i | D_i = 1] - E[Y_i | D_i = 0] = E[Y_{1i} | D_i = 1] - E[Y_{0i} | D_i = 0]$$

Observed difference in avg outcomes

$$= \underbrace{E[Y_{i}(1) \mid D_{i} = 1] - E[Y_{i}(0) \mid D_{i} = 1]}_{E[Y_{i}(0) \mid D_{i} = 1]}$$

average treatment effect on the treated

$$\underbrace{+E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]}_{\text{selection bias}}$$

Avg differences in group outcomes is not causal evidence, because of selection bias

Selection bias

$$E[Y_i | D_i = 1] - E[Y_i | D_i = 0] = E[Y_{1i} | D_i = 1] - E[Y_{0i} | D_i = 0]$$

Observed difference in avg outcomes

$$= \underbrace{E[Y_{i}(1) \mid D_{i} = 1] - E[Y_{i}(0) \mid D_{i} = 1]}_{E[Y_{i}(0) \mid D_{i} = 1]}$$

average treatment effect on the treated

$$\underbrace{+E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]}_{\text{selection bias}}$$

Avg differences in group outcomes is not causal evidence, because of selection bias Let us think of the drivers of selection bias

Other variables also could impact outcome

Q: Are people with health insurance more healthy than those without?

Q: Does having health insurance make people healthy?

	Husbands			Wives		
	Some HI (1)	No HI (2)	Difference (3)	Some HI (4)	No HI (5)	Difference (6)
		1	A. Health			
Health index	4.01 [.93]	3.70 [1.01]	.31 (.03)	4.02 [.92]	3.62 [1.01]	.39 (.04)
		В. С	haracteristics	s		
Nonwhite	.16	.17	01 (.01)	.15	.17	02 (.01)
Age	43.98	41.26	2.71 (.29)	42.24	39.62	2.62 (.30)
Education	14.31	11.56	2.74 (.10)	14.44	11.80	2.64 (.11)
Family size	3.50	3.98	47 (.05)	3.49	3.93	43 (.05)
Employed	.92	.85	.07 (.01)	.77	.56	.21 (.02)
Family income	106,467	45,656	60,810 (1,355)	106,212	46,385	59,828 (1,406)
Sample size	8,114	1,281		8,264	1,131	

• Other differences between those who have and do not have insurance could drive the selection bias

- Other differences between those who have and do not have insurance could drive the selection bias
- We do not have ceteris paribus situation of ALL ELSE EQUAL

- Other differences between those who have and do not have insurance could drive the selection bias
- We do not have *ceteris paribus* situation of ALL ELSE EQUAL
- Part of the selection bias is driven by observable differences

- Other differences between those who have and do not have insurance could drive the selection bias
- We do not have *ceteris paribus* situation of ALL ELSE EQUAL
- Part of the selection bias is driven by observable differences
- Have data, so we can control for those differences

- Other differences between those who have and do not have insurance could drive the selection bias
- We do not have ceteris paribus situation of ALL ELSE EQUAL
- Part of the selection bias is driven by observable differences
- Have data, so we can control for those differences
- Challenge: The selection bias driven by unobservables !

- Other differences between those who have and do not have insurance could drive the selection bias
- We do not have *ceteris paribus* situation of ALL ELSE EQUAL
- Part of the selection bias is driven by observable differences
- Have data, so we can control for those differences
- Challenge: The selection bias driven by unobservables !
 - Always!

Randomized Control Trials

Random assignment eliminates selection bias: Example

- Select an uninsured group
- Randomly assign health insurance (coin tosses)
- Compare health outcomes of those with and without insurance

Random assignment eliminates selection bias: Example

- Select an uninsured group
- Randomly assign health insurance (coin tosses)
- Compare health outcomes of those with and without insurance
- Random assignment makes the comparison *ceteris paribus*

Random assignment eliminates selection bias: Example

- Select an uninsured group
- Randomly assign health insurance (coin tosses)
- Compare health outcomes of those with and without insurance
- Random assignment makes the comparison *ceteris paribus*
- A coin toss is independent of all observable or unobservable that could have driven the choice to buy health insurance and impacted health outcomes.

Let's formalize this!

Randomized Control Trials (RCT)

- Imagine a situation where the treatment $D_i = \{0, 1\}$ is randomly assigned.
- Randomization $\implies D_i \perp (Y_i(1), Y_i(0))$

Mathematically working out

$$\underbrace{E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]}_{\text{Observed difference in avg outcomes}} = E[Y_i(1) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]$$

$$= \underbrace{E[Y_i(1) \mid D_i = 1] - E[Y_i(0) \mid D_i = 1]}_{\text{ATT}}$$

$$\underbrace{+E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]}_{\text{selection bias}}$$

athematically working out

$$\underbrace{E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0]}_{\text{Observed difference in avg outcomes}} = E[Y_i(1) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]$$

$$= \underbrace{E[Y_i(1) \mid D_i = 1] - E[Y_i(0) \mid D_i = 1]}_{\text{ATT}}$$

$$\underbrace{+E[Y_i(0) \mid D_i = 1] - E[Y_i(0) \mid D_i = 0]}_{\text{selection bias}}$$

- In a RCT: selection bias = 0 by design
- Randomly assigned D_i = 1 and D_i = 0 come from the same population -> should have the same average Y_i(0)
- Thus, in a RCT $E[Y_i \mid D_i = 1] - E[Y_i \mid D_i = 0] = E[Y_i(1) \mid D_i = 1] - E[Y_i(0) \mid D_i = 1] \equiv ATT$

When can we estimate these expectations by using corresponding sample average?

Estimation

RCT and regressions

$$ATT = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$$
(1)

In a RCT regressing Y_i on D_i gives us an unbiased and consistent estimate of the avg causal effect of D_i on Y_i

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0] = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$$
(2)

Running a regression of Y on D:

$$Y_{i} = \alpha + \beta D_{i} + u_{i}$$

$$\implies \beta = \underbrace{E[Y_{i} \mid D_{i} = 1]}_{\alpha + \beta + E[u_{i} \mid D_{i} = 1]} - \underbrace{E[Y_{i} \mid D_{i} = 0]}_{\alpha + E[u_{i} \mid D_{i} = 0]} \quad \text{if} \quad E[u_{i} \mid D_{i}] = 0$$

RCT and regressions

$$ATT = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$$
(1)

In a RCT regressing Y_i on D_i gives us an unbiased and consistent estimate of the avg causal effect of D_i on Y_i

$$\mathbb{E}[Y_i \mid D_i = 1] - \mathbb{E}[Y_i \mid D_i = 0] = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$$
(2)

Running a regression of Y on D:

$$Y_{i} = \alpha + \beta D_{i} + u_{i}$$

$$\implies \beta = \underbrace{E[Y_{i} \mid D_{i} = 1]}_{\alpha + \beta + E[u_{i} \mid D_{i} = 1]} - \underbrace{E[Y_{i} \mid D_{i} = 0]}_{\alpha + E[u_{i} \mid D_{i} = 0]} \quad \text{if} \quad E[u_{i} \mid D_{i}] = 0$$

In other words, selection bias = $E[u_i | D_i = 1] - E[u_i | D_i = 0]$

This works because of the **random** assignment of D_i

This works because of the **random** assignment of D_i

- The random assignment of *D_i* makes the TG & CG identical on average including unobservables
- Since D_i is random $\implies cov(D_i, u_i) = 0 \implies E[u_i \mid D_i] = 0$
- $E[Y_i(1) | D_i = 1] = E[Y_i(1) | D_i = 0]$ Potential outcomes are independent of treatment assignment

Why control for other covariates X?

- If D_i is randomly assigned then estimating Y_i = α + βD_i + e_i gives unbiased and consistent estimate of ATT of D_i on Y_i
- Then why estimate $Y_i = \alpha + \beta D_i + \gamma X_i + u_i$?

$$E[Y_i | D_i = 1, X_i] - E[Y_i | D_i = 0, X_i]$$

$$E[Y_i \mid D_i = 1, X_i] - E[Y_i \mid D_i = 0, X_i]$$

= $E[Y_i(1) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 0, X_i]$

$$E[Y_i \mid D_i = 1, X_i] - E[Y_i \mid D_i = 0, X_i]$$

= $E[Y_i(1) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 0, X_i]$
= $\underbrace{E[Y_i(1) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 1, X_i]}_{ATT} + \underbrace{E[Y_i(0) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 0, X_i]}_{\text{selection bias}}$

• Random assignment of $D_i \implies E[Y_i(0) \mid D_i = 1, X_i] = E[Y_i(0) \mid D_i = 0, X_i]$

$$E[Y_i \mid D_i = 1, X_i] - E[Y_i \mid D_i = 0, X_i]$$

= $E[Y_i(1) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 0, X_i]$
= $\underbrace{E[Y_i(1) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 1, X_i]}_{ATT} + \underbrace{E[Y_i(0) \mid D_i = 1, X_i] - E[Y_i(0) \mid D_i = 0, X_i]}_{\text{selection bias}}$

- Random assignment of $D_i \implies E[Y_i(0) \mid D_i = 1, X_i] = E[Y_i(0) \mid D_i = 0, X_i]$
- So far we had: $D_i \perp (Y_i(1), Y_i(0))$
- Now we have implied by the above: $D_i \perp (Y_i(1), Y_i(0)) \mid X_i$

What happens to the SE of β ?

Estimating $Y_i = \alpha + \beta D_i + e_i \text{ VS } Y_i = \alpha + \beta D_i + \gamma X_i + u_i$

Let us code and work out the math too!

Things to take care of in RCTs

1. Description of the implementation of random assignment [Give eg.]

- 1. Description of the implementation of random assignment [Give eg.]
- 2. BALANCE between TG and CG

- 1. Description of the implementation of random assignment [Give eg.]
- 2. BALANCE between TG and CG
 - Test for any diff in pre-treatment outcomes and covariates
 - Test for any standardized diff in pre-treatment outcomes and covariates (Why? Draw example)

- 1. Description of the implementation of random assignment [Give eg.]
- 2. BALANCE between TG and CG
 - Test for any diff in pre-treatment outcomes and covariates
 - Test for any standardized diff in pre-treatment outcomes and covariates (Why? Draw example)
- 3. Sample size

- 1. Description of the implementation of random assignment [Give eg.]
- 2. BALANCE between TG and CG
 - Test for any diff in pre-treatment outcomes and covariates
 - Test for any standardized diff in pre-treatment outcomes and covariates (Why? Draw example)
- 3. Sample size
- 4. Fractions treated in the treatment group and in the control group [We will revisit this after we have learnt IV]. For now we will assume perfect compliance.

2. Design: Stratification and Balance

E.g. treatment to only boys in a class

2. Design: Stratification and Balance

E.g. treatment to only boys in a class

- Stratify to improve balance b/w TG and CG
- Create strata and then randomize. [Give example and depth]

The idea here is that conditional on X_i the assignment of D_i is random.

 $D_i \perp (Y_i(1), Y_i(0)) \mid X_i$

3. Spillovers

- The pure treatment effect may not be correctly estimated if there are spillovers from treated units to untreated units
- Positive spillovers will lead to underestimate treatment effects
- Depends on the level at which randomization is done
- Eg. treating kids for de-worming in Africa at the level of schools instead at the individual level (Miguel and Kremer, 2004 Econometrica)
- \$3.50 -> one additional year of attendance. Much cheaper intervention to improve absenteeism than other policies like better teachers, free books etc.

Issues with implementing RCT

Primarily logistic

- Long duration
- Political economy interacts with implementation
- Very high costs and thus scale issues
- Sometimes completely infeasible

Scaling up is quite a different problem, at times because of equilibrium effects etc. While trying to answer a causal question it is best to think about the ideal RCT

Other Data Contexts and Identification Strategies

- Experimental:
 - Randomized Control Trials

Other Data Contexts and Identification Strategies

- Experimental:
 - Randomized Control Trials
- Non-experimental:
 - Regressions Already covered
 - Matching (won't cover in this course)

Other Data Contexts and Identification Strategies

- Experimental:
 - Randomized Control Trials
- Non-experimental:
 - Regressions Already covered
 - Matching (won't cover in this course)
- Quasi-experimental / Natural experiments: "As good as randomly assigned"
 - Instrumental Variables
 - Regression Discontinuity Design
 - Fixed effects / Random Effects (panel data)
 - Difference-in-differences (will cover depending on time)

Podcasts on RCT:

How do we know what really works in healthcare? – Freakonomics (April 2, 2015) Amy Finkelstein (MIT) on the impact of health insurance (Oregon Medicaid expansion experiment). Steve Levitt here initially gives a small introduction to RCT.

Whats not on the test – Hidden Brain (May 13, 2019) Jim Heckman (U-Chicago) on the impact of early childhood investments on long run outcomes

When you start to miss Tony from Accounting – Hidden Brain (Nov 16, 2020) Nicholas Bloom (Stanford) on the impact of working from home on productivity

The Price of Doing Business with John List – People I (Mostly) Admire (Dec 9, 2022) John List (U-Chicago) on the rise of RCT and worries of scaling up experiments (SUTVA violations)