Difference-in-Differences (D-i-D) Methods

Moshi Alam

1/39



Evaluation of policies

e What is the causal impact of raising minimum wage on employment?

® What does economic theory say?

® Under perfect competition?
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Evaluation of policies

e What is the causal impact of raising minimum wage on employment?

What does economic theory say?

® Under perfect competition?
® However, empirical evidence shows markets are not perfectly competitive

® Then how about under monopsony?

NJ raised minimum wage in 1992, from 4.25 to 5.05 per hour

Observed change in employment was 0.59% in NJ

Is this the causal effect of the minimum wage increase? Why or why not?
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Difference-in-Differences: Introduction
e Key issue in selection bias is that we do not observe the counterfactual

® D-i-D provides an often-plausible method for estimating the counterfactual
(untreated) potential outcome of a treated group

¢ Difference-in-differences is a combination of two research designs:

® Cross-section (treated versus untreated/control) comparison

® Across time (pre-treatment versus post-treatment) comparison

® D-i-D is most commonly used to study the effect of some policy change that is
applied to a subset of the population.
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Difference in Differences: Introduction

* We begin by comparing difference-in-differences with each of these designs.

e Define two groups:

® D; = 1 denoting the treatment group

® D; = 0 denoting the control group

e Each group is observed in two periods:

® T, = 1 denoting the post-treatment period

® T, = 0 denoting the pre-treatment period
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D1: The Cross-sectional Design

® A cross-section design compares outcomes for the treatment and control
groups in the post-treatment period:

AC =E[Yy |Di=1T, =1 —E[Yy | D;=0, T =1]
e ACC can be interpreted as a causal effect of the treatment in the population if

and only if individuals’ average unobserved characteristics are equal across the
two groups

¢ This is the standard conditional mean independence assumption you have seen
before in the class:

E[S,’t|D,’:1, Tt:].]:E[e,‘t|D,‘:O, Tt:]-]

® Probably will not hold.
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D2: The Across Time Comparison Design
® An Across Time Comparison design compares outcomes for the treatment
group in the pre- and post- treatment periods:

AMTC =E[Yy | D=1, T =1 —E[Yi | D; =1, T: = 0]
e AATC can be interpreted as a causal effect of the treatment if and only if
individuals’ average unobserved characteristics do not change through time.

e This is a variant on the standard conditional mean independence assumption.

¢ This condition may fail for a range of reasons
® Year-specific macro shocks
® Changes in group composition

® Changes in the institutional environment facing the group

Secular time trends
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D-i-D: The Difference in Differences Design

¢ A difference-in-differences (DiD) design compares the pre-/post-treatment
time period change in outcomes for the treatment group to that of the control

group:

Time change in treatment group

ADID _ (E[Yit|Di—1v T =1 —E[Y: | D; =1, Tt:O]> (1)

—<E[\/,t‘D,:O,Ttl]—E[\/,t|D,:O,Tt—0]

Time change in control group
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Difference in Differences: ldentifying Assumption

e AP can be interpreted as a causal effect of the treatment only if:

Elej | Di =1, T = 1] — E[eje | D; = 1, Tt = 0] (2)
= Ele; | Dj=0,T, = 1] — Ele;s | D; =0, T; = 0]

¢ |n words: individuals’ average unobserved characteristics would have changed
through time in the same way for the control and treatment groups in the
absence of the treatment

e This is commonly referred to as the parallel trends assumption or parallel
trends in the absence of treatment
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Difference in Differences: ldentifying Assumption

The plausibility of “parallel trends in the absence of treatment” identifying
assumption is context-specific

Typically more plausible than the CC and ATC identifying assumptions above

DiD allows for strategic/non-random/confounded selection into the treatment
group. Give examples

The key is that these forms of selection must not be time-varying
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Implementing a D-i-D



Steps in implementing

e Data

Estimation/model(s)

Choosing the CG

Violations of identifying assumptions: testing

Generalization to multiple time periods and/or groups

Inference: standard errors
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Data
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Data

® Must have data for units belonging tothe TG and the CG, both in the pre- and
post-treatment periods

¢ DiD can be implemented using either panel data or repeated cross-sections

® |nterpretation and methods for DiD are almost identical in both types of data.
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Data - impositions on the identifying assumptions

e But the identifying assumption imposes some restrictions on changes through
time in the data

® Attrition for panel datasets

® Consistency of the sampling frame for repeated cross-sections

® Need to defend the plausibility

13/39



Estimation
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Estimation

e Assumption (2) is an identification assumption, describing which data
generating processes identify ATT in D-i-D models

® |n practice, almost all of the difference-in-differences models discussed in this
lecture are estimated by ordinary least squares

e But the idea is to formulate the specification in such a way that will allow us to
use the identification assumption

® At times we may and will need some additional assumptions, but for now lets
deal with the 2x2 case
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Canonical 2x2 DiD

® Paneldataon Y fort=1,2andi=1,..., N

* Treatment timing: Some units (D; = 1) are treated in period 2; everyone else is
untreated (D; = 0)
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Canonical 2x2 DiD

® Paneldataon Y fort=1,2andi=1,..., N

* Treatment timing: Some units (D; = 1) are treated in period 2; everyone else is
untreated (D; = 0)

¢ Potential outcomes: Observe Y;;(1) = Y;:(0, 1) for treated units; and
Yit(0) = Y;:(0,0) for comparison
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Parallel Trends (PT) Assumption

® The parallel trends assumption states that if the treatment hadn’t occurred,
average outcomes for the treatment and control groups would have evolved in
parallel
E[Yi2(0) — Yin(0) | Di =1] = E[Y2(0) — Yi1(0) | D; =0

Counterfactual change for treated group Change for untreated group
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Parallel Trends (PT) Assumption

® The parallel trends assumption states that if the treatment hadn’t occurred,
average outcomes for the treatment and control groups would have evolved in
parallel
E[Yi2(0) — Yin(0) | Di =1] = E[Y2(0) — Yi1(0) | D; =0

Counterfactual change for treated group Change for untreated group

® The parallel trends assumption can also be viewed as a selection bias stability
assumption:

E[Y2(0) | D = 1] — E[Yn(0) | D = 0] = E[¥a(0) | D; = 1] — E[Ya(0) | D; = 0]

Selection bias in period 2 Selection bias in period 1

e PT allows for there to be selection bias! But it must be stable over time
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Visualizing PT
E[Y(0)| Treated]

Selection bias in period 1

Selection bias in period O

—

E[Y(0)| Control]
} % Time
1 2
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main identifying assumptions

e Parallel trends:
E[Yi2(0) = ¥i(0) | Dj = 1] = E[Yj2(0) — Y;2(0) [ Dj = 0]. (3)
¢ No anticipation: Y;1(1) = Y;1(0)

® |ntuitively, outcome in period 1 isn't affected by treatment status in period 2

® Often left implicit in notation, but important for interpreting DiD estimand as a
causal effect in period 2
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Identification

® Average treatment effect on the treated (ATT) in period 2 defined:

TarT = E[Yi2(1) — Yi2(0) | D = 1]
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Identification

® Average treatment effect on the treated (ATT) in period 2 defined:

TarT = E[Yi2(1) — Yi2(0) | D = 1]

e Under parallel trends and no anticipation, can show that

TarT = (E[Yi2| Di = 1] — E[Yn|D; = 1]) — (E[Yj2| D; = 0] — E[Y;1|D; = 0]),

Change for treated Change for control

a “difference-in-differences” of population means
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Visualizing ldentification
E[Y| Treated]

ATT

E[Y(0)| Treated]

—

E[Y|Control]
1 1 Time
1 2
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Proof of Identification

® Start with E[Yi» — Ya|D; = 1] — E[Yi» — Ya|D; = 0]
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® Start with E[Yi» — Ya|D; = 1] — E[Yi» — Ya|D; = 0]

E[Yia(1) = Y (1)|Di = 1] = E[Y}2(0) — Yir(0)| i = 0]

Use No Anticipation
E[Yi2(1) — Y (0)[ D; = 1] — E[Y32(0) — Yj1(0)| D; = 0]

E[Yi2(1) — Yi2(0)[ Dy = 1]+
[(E[Yi2(0)| D = 1] — E[Yin(0)|D; = 1]) — (E[Yi2(0)|D; = 0] — E[Yi1(0)|Di = 0])]
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Proof of Identification

® Start with E[Yi» — Ya|D; = 1] — E[Yi» — Ya|D; = 0]

E[Yia(1) = Y (1)|Di = 1] = E[Y}2(0) — Yir(0)| i = 0]

Use No Anticipation
E[Yi2(1) — Y (0)[ D; = 1] — E[Y32(0) — Yj1(0)| D; = 0]

E[Yia(1) = Y2 (0)| D; = 1]+
[(E[Yi2(0)| D = 1] — E[Yin(0)|D; = 1]) — (E[Yi2(0)|D; = 0] — E[Yi1(0)|Di = 0])]

e Cancel the last terms using PT to get E[Yj2(1) — Yi2(0)|D; = 1] = Tarr
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2x2 DiD can be estimated in several ways:

1. Compute avg. outcome (Y) in each group/period. Then compute,

APD — (VDzl,Tzl - VDzl,TzO) - <7D:0,T:1 +7D:O,T:0>

2. Estimate the regression model,

Yie = a+ BD; +’)’Tt+ADiDDiTt—|-8it
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Equivalence of methods 1 and 2 and pictorial intuition

Yie=a+ BD;+ T+ APPD; T, + €5
E[Y;|Di=1,t=0] =
E[Yy|D; =0,t = 0] =
E[Yi|Dj=1t=1] =
E[Y;|D; = 0,t =1] =
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Card and Kreuger (1994)



The problem

® |Impact of increase in minimum wage on labor market unemployment
® What does Economic theory tell us the answer will be?

e Different theoretical assumptions imply different answers - hence it is an
empirical question

e But this was not credibly answered empirically before

® There are some caveats to this study, but those are beyond the scope of this
class

¢ Also their results have not been qualitatively changed with better data and
better methods
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Whats the Ideal Way to solve the problem

We do a RCT

We sample a large number of stores/ local labor markets

Collect data at base-line on wages and employment

Randomly assign whether there is an increase in minimum wage or not

Then collect end-line data on employment and wages
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In absence of a RCT

¢ Card and Kreuger found the second best way to answer this question

® An exogenous change in the wage structure by means of a policy change on
minimum wages

e Before and after the policy went in place they collected data from the treated
state and the comparison control state and implemented a D-i-D
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Instituitional Details

e New Jersey announced an increase in minimum wages from $ 4.25 to $ 5.05 in
Nov 1992

Neighboring state Pennsylvania did not have any change and its minimum
wage stayed at $ 4.25

Created a perfect opportunity for a before and after comparison with NJ as the
treated state and PA as the control state

Classic 2 x 2 D-i-D
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Data

e Suvey of around 400 fast food restaurants
® |n both NJ and PA
e Before policy (Feb 1992) and after policy (Nov 1992)

Lets look at the raw data on wages in both states in R!
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Count
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Histogram of Starting Wages by State and date
February 1992

November 1992
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Averages in the data

Dependent Variable

FTW before
FTE after

Change in mean FTE

PA
233
(1.35)
21.147
(0.94)
—2.16

(1.25)

Stores by State
NJ
2044
(0.51)
21.03
(0.52)
0.59

(0.54)

NJ-PA
—2.89
(1.44)
—0.14
(1.07)
276

(1.36)
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Estimating equation
Yist = & + BNJs + yPost; + SNJs X Post; 4 €5

® PApre: E[Y | NJs =0, Post; = 0] = a + E[ejs¢ | NJs = 0, Post; = 0]

® PApost: E[Y | NJs =0, Post; = 1] = a + v+ Elejs | NJs = 0, Post; = 1]

o NJpre: E[Y | NJs =1, Posty = 0] = a+ B+ E[ejsr | NJs = 1, Post; = 0]

® NJpost: E[Y | NJs =1, Post; = 1] =a+ B+ v+ 06+ Elejst | NJs = 1, Post; = 1]
® D-i-D:6 = (E[Y | NJs = 1, Post, = 1] = E[Y | NJ; = 1, Post; = 0] ) -

(E[Y | NJs = 0, Post, = 1] — E[Y | NJs = 0, Post; = o})

Pennsylvania (PA) New Jersey (NJ) A (NJ - PA)
Pre mean o+ Eleist | PA, pre] o+ B+ Elejse | NJ, pre] B
Post mean «+ v+ Eleist | PA, post| a+B+y+06+ Eleise | NJ, post] B+
A (post -pre) v+ Ele;st | PA, post] — Elejst | PA, pre] v+ 00+ Elejst | NJ, post] — Elejst | NJ, pre] )

® Assuming parallel trends, the conditional expectations of the errors cancel out
® ¢ identifies the causal effect of the minimum wage increase on employment

® The equations in the paper are slightly different. Can add x;; to control for other factors not

affected by the treatment. 31739
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e Underlying assumptions is:

1. In absence of the minimum wage increase, average employment in fast food
restaurants in NJ would have followed the same trend as in PA

E[Yi2(0) = Yi1(0) | NJ; = 1] = E[Yj2(0) — Y;1(0) | NJ; = 0]
2. No anticipation - firms did not change employment in Feb 1992 in anticipation of
the Nov 1992 increase
e PT can also be defended by exploring -
® Number of stores
® Alternative specifications
® Other sub samples
® Other explanations of off setting effects - prices

¢ This will be part of your assignments

e But we can do much more if we have multiple periods
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Multiple periods and Event Studies



Visually: Multiple Periods 2 groups assuming PT

Treatment occurs

Treated E[Y | D = 1]
(%)

~E[Y(0) | D =1]

Control E[Y | D = 0]

Parallel pre-trends = E[Y(0) | D =0]

: 1 Time since treatment
-2 -1 0 1 2

PT: E[Y;+(0) | D; = 1] — E[Y;:(0) | D; = 0] is constant over time t
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Estimating equation in the 2xT case

If you had multiple time periods but still only two groups (treatment and
comparison [NJ and PA in Card and Kreuger]), you could estimate:

Yist = & + BNJs + yPost + 6NJs X Posty + €5

Post; is an indicator equal to one for all periods after treatment

What does é measure here, based on the previous graph, assuming parallel
trends and no anticipation?

Let us work with an example in R!
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We can do much more!

* With more than two time periods, we can estimate more flexible models
e we can estimate dynamic treatment effects (event studies)

e we can test the parallel trends assumption more directly
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Placebo Tests: pre-trends
e With longer panels we can perform a “falsification test” or “placebo test” of the
DID identifying assumptions

e Consider a case with two pre-treatment time periods T = —land T = -2

¢ |f PT holds between periods -1 and -2, then changes between those periods
should be identical in both groups

Pre-treatment change among treated
T, = E[YID=1,T=-2]—E[Y|ID=1,T = —1]
—(ElYID=0,T= 2] ~E[v|D=0,T = -1])

Pre-treatment change among controls
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Placebo Tests: pre-trends

e If T_5 is non-zero, we reject the “equal time changes” assumption between
periods -1 and -2

e This is not a direct test of the “parallel trends” identifying assumption

e |t is possible that the treatment and control group time changes between
periods O and 1 are equal even if they are not equal
between periods -1 and -2

® However, this argument is difficult to sustain.

® We can do all this by including leads and lags of the treatment indicator in the
simple model
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Placebo Tests: graphing pre-trends

® More generally, DD designs with more than two periods typically show a graph
of the treatment and control group means through time

e The graph is most convincing when the time series are approximately parallel
in all pre-treatment periods and move apart after the treatment
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Event study

we go from estimating a single ¢ to estimating a series of ;'s:

Yiee =0+ BDs+7e+ Y Tu(Ds x 1{t = k}) +€jst (Event Study) where:

k—
e where 1{t = k} is an indicator equal to one if time period t is period k relative
to treatment

® . is a vector of time fixed effects equivalent to having indicators for each time
period (except the reference period -1, to avoid collinearity)

® We omit one period (usually the period just before treatment, k = —1) to avoid
perfect collinearity with Ds.

Let us expand it!

® What does 11, 7> measure here?
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Event study

we go from estimating a single ¢ to estimating a series of ;'s:

Yiee =0+ BDs+7e+ Y Tu(Ds x 1{t = k}) +€jst (Event Study) where:

k—
e where 1{t = k} is an indicator equal to one if time period t is period k relative
to treatment

® . is a vector of time fixed effects equivalent to having indicators for each time
period (except the reference period -1, to avoid collinearity)

® We omit one period (usually the period just before treatment, k = —1) to avoid
perfect collinearity with Ds.

Let us expand it!

e What does 11, 7> measure here? What does 7_» measure here?

e 7,: ATT parameter in period k relative to pre-treatment period —1
® Let usjump to R again!
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Generalizing D-i-D to multiple
groups and time periods:
TWFE models



