
Difference-in-Differences (D-i-D) Methods

Moshi Alam

1 / 39



Evaluation of policies
• What is the causal impact of raising minimum wage on employment?

• What does economic theory say?
• Under perfect competition?

• However, empirical evidence shows markets are not perfectly competitive

• Then how about under monopsony?

• NJ raised minimum wage in 1992, from 4.25 to 5.05 per hour

• Observed change in employment was 0.59% in NJ

• Is this the causal effect of the minimum wage increase? Why or why not?
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Difference-in-Differences: Introduction

• Key issue in selection bias is that we do not observe the counterfactual

• D-i-D provides an often-plausible method for estimating the counterfactual
(untreated) potential outcome of a treated group

• Difference-in-differences is a combination of two research designs:

• Cross-section (treated versus untreated/control) comparison

• Across time (pre-treatment versus post-treatment) comparison

• D-i-D is most commonly used to study the effect of some policy change that is
applied to a subset of the population.
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Difference in Differences: Introduction

• We begin by comparing difference-in-differences with each of these designs.

• Define two groups:

• Di = 1 denoting the treatment group

• Di = 0 denoting the control group

• Each group is observed in two periods:

• Tt = 1 denoting the post-treatment period

• Tt = 0 denoting the pre-treatment period

5 / 39



D1: The Cross-sectional Design
• A cross-section design compares outcomes for the treatment and control
groups in the post-treatment period:

∆CC = E [Yit | Di = 1,Tt = 1]− E [Yit | Di = 0,Tt = 1]

• ∆CC can be interpreted as a causal effect of the treatment in the population if
and only if individuals’ average unobserved characteristics are equal across the
two groups

• This is the standard conditional mean independence assumption you have seen
before in the class:

E [ε it | Di = 1,Tt = 1] = E [ε it | Di = 0,Tt = 1]

• Probably will not hold.
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D2: The Across Time Comparison Design
• An Across Time Comparison design compares outcomes for the treatment
group in the pre- and post- treatment periods:

∆ATC = E [Yit | Di = 1,Tt = 1]− E [Yit | Di = 1,Tt = 0]

• ∆ATC can be interpreted as a causal effect of the treatment if and only if
individuals’ average unobserved characteristics do not change through time.

• This is a variant on the standard conditional mean independence assumption.

• This condition may fail for a range of reasons
• Year-specific macro shocks
• Changes in group composition
• Changes in the institutional environment facing the group
• Secular time trends
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D-i-D: The Difference in Differences Design

• A difference-in-differences (DiD) design compares the pre-/post-treatment
time period change in outcomes for the treatment group to that of the control
group:

∆DiD =

Time change in treatment group︷ ︸︸ ︷(
E [Yit | Di = 1,Tt = 1]− E [Yit | Di = 1,Tt = 0]

)
(1)

−
(
E [Yit | Di = 0,Tt = 1]− E [Yit | Di = 0,Tt = 0]

)
︸ ︷︷ ︸

Time change in control group
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Difference in Differences: Identifying Assumption

• ∆DiD can be interpreted as a causal effect of the treatment only if:

E [ε it | Di = 1,Tt = 1]− E [ε it | Di = 1,Tt = 0] (2)
= E [ε it | Di = 0,Tt = 1]− E [ε it | Di = 0,Tt = 0]

• In words: individuals’ average unobserved characteristics would have changed
through time in the same way for the control and treatment groups in the
absence of the treatment

• This is commonly referred to as the parallel trends assumption or parallel
trends in the absence of treatment
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Difference in Differences: Identifying Assumption

• The plausibility of “parallel trends in the absence of treatment” identifying
assumption is context-specific

• Typically more plausible than the CC and ATC identifying assumptions above

• DiD allows for strategic/non-random/confounded selection into the treatment
group. Give examples

• The key is that these forms of selection must not be time-varying
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Implementing a D-i-D
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Steps in implementing

• Data

• Estimation/model(s)

• Choosing the CG

• Violations of identifying assumptions: testing

• Generalization to multiple time periods and/or groups

• Inference: standard errors
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Data
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Data

• Must have data for units belonging tothe TG and the CG, both in the pre- and
post-treatment periods

• DiD can be implemented using either panel data or repeated cross-sections

• Interpretation and methods for DiD are almost identical in both types of data.
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Data - impositions on the identifying assumptions

• But the identifying assumption imposes some restrictions on changes through
time in the data

• Attrition for panel datasets

• Consistency of the sampling frame for repeated cross-sections

• Need to defend the plausibility
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Estimation
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Estimation

• Assumption (2) is an identification assumption, describing which data
generating processes identify ATT in D-i-D models

• In practice, almost all of the difference-in-differences models discussed in this
lecture are estimated by ordinary least squares

• But the idea is to formulate the specification in such a way that will allow us to
use the identification assumption

• At times we may and will need some additional assumptions, but for now lets
deal with the 2x2 case
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Canonical 2x2 DiD

• Panel data on Yit for t = 1, 2 and i = 1, ...,N

• Treatment timing: Some units (Di = 1) are treated in period 2; everyone else is
untreated (Di = 0)

• Potential outcomes: Observe Yit(1) ≡ Yit(0, 1) for treated units; and
Yit(0) ≡ Yit(0, 0) for comparison
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Parallel Trends (PT) Assumption
• The parallel trends assumption states that if the treatment hadn’t occurred,
average outcomes for the treatment and control groups would have evolved in
parallel

E [Yi2(0)− Yi1(0) | Di = 1]︸ ︷︷ ︸
Counterfactual change for treated group

= E [Yi2(0)− Yi1(0) | Di = 0]︸ ︷︷ ︸
Change for untreated group

• The parallel trends assumption can also be viewed as a selection bias stability
assumption:

E [Yi2(0) | Di = 1]− E [Yi2(0) | Di = 0]︸ ︷︷ ︸
Selection bias in period 2

= E [Yi1(0) | Di = 1]− E [Yi1(0) | Di = 0]︸ ︷︷ ︸
Selection bias in period 1

• PT allows for there to be selection bias! But it must be stable over time

16 / 39



Parallel Trends (PT) Assumption
• The parallel trends assumption states that if the treatment hadn’t occurred,
average outcomes for the treatment and control groups would have evolved in
parallel

E [Yi2(0)− Yi1(0) | Di = 1]︸ ︷︷ ︸
Counterfactual change for treated group

= E [Yi2(0)− Yi1(0) | Di = 0]︸ ︷︷ ︸
Change for untreated group

• The parallel trends assumption can also be viewed as a selection bias stability
assumption:

E [Yi2(0) | Di = 1]− E [Yi2(0) | Di = 0]︸ ︷︷ ︸
Selection bias in period 2

= E [Yi1(0) | Di = 1]− E [Yi1(0) | Di = 0]︸ ︷︷ ︸
Selection bias in period 1

• PT allows for there to be selection bias! But it must be stable over time

16 / 39



Visualizing PT

Time
1 2

E [Y (0)|Treated ]

E [Y (0)|Control ]

Selection bias in period 0

Selection bias in period 1

17 / 39



main identifying assumptions

• Parallel trends:

E[Yi2(0)− Yi1(0) | Di = 1] = E[Yi2(0)− Yi1(0) | Di = 0]. (3)

• No anticipation: Yi1(1) = Yi1(0)

• Intuitively, outcome in period 1 isn’t affected by treatment status in period 2
• Often left implicit in notation, but important for interpreting DiD estimand as a

causal effect in period 2
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Identification

• Average treatment effect on the treated (ATT) in period 2 defined:

τATT = E [Yi2(1)− Yi2(0) | Di = 1]

• Under parallel trends and no anticipation, can show that

τATT = (E [Yi2|Di = 1]− E [Yi1|Di = 1])︸ ︷︷ ︸
Change for treated

− (E [Yi2|Di = 0]− E [Yi1|Di = 0])︸ ︷︷ ︸
Change for control

,

a “difference-in-differences” of population means
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Visualizing Identification

Time
1 2

E [Y (0)|Treated ]

E [Y |Treated ]

E [Y |Control ]

ATT
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Proof of Identification

• Start with E [Yi2 − Yi1|Di = 1]− E [Yi2 − Yi1|Di = 0]

E [Yi2(1)− Yi1(1)|Di = 1]− E [Yi2(0)− Yi1(0)|Di = 0]

Use No Anticipation
E [Yi2(1)− Yi1(0)|Di = 1]− E [Yi2(0)− Yi1(0)|Di = 0]

E [Yi2(1)− Yi2(0)|Di = 1]+

[(E [Yi2(0)|Di = 1]− E [Yi1(0)|Di = 1])− (E [Yi2(0)|Di = 0]− E [Yi1(0)|Di = 0])]

• Cancel the last terms using PT to get E [Yi2(1)− Yi2(0)|Di = 1] = τATT
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2x2 DiD can be estimated in several ways:

1. Compute avg. outcome (Y ) in each group/period. Then compute,

∆̂DiD =
(
Y D=1,T=1 − Y D=1,T=0

)
−
(
Y D=0,T=1 + Y D=0,T=0

)
2. Estimate the regression model ,

Yit = α + βDi + γTt + ∆DiDDiTt + ε it
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Equivalence of methods 1 and 2 and pictorial intuition

Yit = α + βDi + γTt + ∆DiDDiTt + ε it

E[Yit |Di = 1, t = 0] =
E[Yit |Di = 0, t = 0] =
E[Yit |Di = 1, t = 1] =
E[Yit |Di = 0, t = 1] =
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Card and Kreuger (1994)
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The problem

• Impact of increase in minimum wage on labor market unemployment
• What does Economic theory tell us the answer will be?
• Different theoretical assumptions imply different answers - hence it is an
empirical question

• But this was not credibly answered empirically before
• There are some caveats to this study, but those are beyond the scope of this
class

• Also their results have not been qualitatively changed with better data and
better methods
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Whats the Ideal Way to solve the problem

• We do a RCT
• We sample a large number of stores/ local labor markets
• Collect data at base-line on wages and employment
• Randomly assign whether there is an increase in minimum wage or not
• Then collect end-line data on employment and wages
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In absence of a RCT

• Card and Kreuger found the second best way to answer this question
• An exogenous change in the wage structure by means of a policy change on
minimum wages

• Before and after the policy went in place they collected data from the treated
state and the comparison control state and implemented a D-i-D
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Instituitional Details

• New Jersey announced an increase in minimum wages from $ 4.25 to $ 5.05 in
Nov 1992

• Neighboring state Pennsylvania did not have any change and its minimum
wage stayed at $ 4.25

• Created a perfect opportunity for a before and after comparison with NJ as the
treated state and PA as the control state

• Classic 2 x 2 D-i-D
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Data

• Suvey of around 400 fast food restaurants
• In both NJ and PA
• Before policy (Feb 1992) and after policy (Nov 1992)

Lets look at the raw data on wages in both states in R!
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Averages in the data
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Estimating equation
Yist = α + βNJs + γPostt + δNJs × Postt + εist

• PA pre: E [Y | NJs = 0,Postt = 0] = α + E [εist | NJs = 0,Postt = 0]
• PA post: E [Y | NJs = 0,Postt = 1] = α + γ + E [εist | NJs = 0,Postt = 1]
• NJ pre: E [Y | NJs = 1,Postt = 0] = α + β + E [εist | NJs = 1,Postt = 0]
• NJ post: E [Y | NJs = 1,Postt = 1] = α + β + γ + δ + E [εist | NJs = 1,Postt = 1]

• D-i-D: δ =
(
E [Y | NJs = 1,Postt = 1]− E [Y | NJs = 1,Postt = 0]

)
−(

E [Y | NJs = 0,Postt = 1]− E [Y | NJs = 0,Postt = 0]
)

Pennsylvania (PA) New Jersey (NJ) ∆ (NJ - PA)
Pre mean α + E [ε ist | PA, pre] α + β + E [ε ist | NJ, pre] β
Post mean α + γ + E [ε ist | PA, post] α + β + γ + δ + E [ε ist | NJ, post] β + δ

∆ (post - pre) γ + E [ε ist | PA, post]− E [ε ist | PA, pre] γ + δ + E [ε ist | NJ, post]− E [ε ist | NJ, pre] δ

• Assuming parallel trends, the conditional expectations of the errors cancel out
• δ identifies the causal effect of the minimum wage increase on employment
• The equations in the paper are slightly different. Can add xist to control for other factors not

affected by the treatment. 31 / 39
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• Underlying assumptions is:
1. In absence of the minimum wage increase, average employment in fast food

restaurants in NJ would have followed the same trend as in PA

E [Yi2(0)− Yi1(0) | NJi = 1] = E [Yi2(0)− Yi1(0) | NJi = 0]

2. No anticipation - firms did not change employment in Feb 1992 in anticipation of
the Nov 1992 increase

• PT can also be defended by exploring -
• Number of stores
• Alternative specifications
• Other sub samples
• Other explanations of off setting effects - prices

• This will be part of your assignments
• But we can do much more if we have multiple periods
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Multiple periods and Event Studies
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Visually: Multiple Periods 2 groups assuming PT

Time since treatment
-2 -1 0 1 2

Treatment occurs

Control E [Y | D = 0]
= E [Y (0) | D = 0]

Treated E [Y | D = 1]

E [Y (0) | D = 1]τ1

τ2

Parallel pre-trends

PT: E [Yit(0) | Di = 1]− E [Yit(0) | Di = 0] is constant over time t
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Estimating equation in the 2xT case

• If you had multiple time periods but still only two groups (treatment and
comparison [NJ and PA in Card and Kreuger]), you could estimate:

Yist = α + βNJs + γPostt + δNJs × Postt + ε ist

• Postt is an indicator equal to one for all periods after treatment
• What does δ measure here, based on the previous graph, assuming parallel
trends and no anticipation?

• Let us work with an example in R!
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We can do much more!

• With more than two time periods, we can estimate more flexible models
• we can estimate dynamic treatment effects (event studies)
• we can test the parallel trends assumption more directly
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Placebo Tests: pre-trends
• With longer panels we can perform a “falsification test” or “placebo test” of the
DID identifying assumptions

• Consider a case with two pre-treatment time periods T = −1 and T = −2

• If PT holds between periods -1 and -2, then changes between those periods
should be identical in both groups

τ−2 =

Pre-treatment change among treated︷ ︸︸ ︷
E [Y |D = 1,T = −2]− E [Y |D = 1,T = −1]

−
(
E [Y |D = 0,T = −2]− E [Y |D = 0,T = −1]︸ ︷︷ ︸

Pre-treatment change among controls

)
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Placebo Tests: pre-trends

• If τ−2 is non-zero, we reject the “equal time changes” assumption between
periods -1 and -2

• This is not a direct test of the “parallel trends” identifying assumption

• It is possible that the treatment and control group time changes between
periods 0 and 1 are equal even if they are not equal
between periods -1 and -2

• However, this argument is difficult to sustain.
• We can do all this by including leads and lags of the treatment indicator in the
simple model
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Placebo Tests: graphing pre-trends

• More generally, DD designs with more than two periods typically show a graph
of the treatment and control group means through time

• The graph is most convincing when the time series are approximately parallel
in all pre-treatment periods and move apart after the treatment
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Event study
we go from estimating a single δ to estimating a series of τk ’s:

Yist = α+ βDs +γt + ∑
k ̸=−1

τk
(
Ds × 1{t = k}

)
+ ϵist (Event Study) where:

• where 1{t = k} is an indicator equal to one if time period t is period k relative
to treatment

• γt is a vector of time fixed effects equivalent to having indicators for each time
period (except the reference period -1, to avoid collinearity)

• We omit one period (usually the period just before treatment, k = −1) to avoid
perfect collinearity with Ds .

Let us expand it!
• What does τ1, τ2 measure here?

What does τ−2 measure here?
• τk : ATT parameter in period k relative to pre-treatment period −1

• Let us jump to R again!
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Generalizing D-i-D to multiple
groups and time periods:

TWFE models
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