
Summary of Introduction to Econometrics
Prof. Alam

1 Population concepts

For random variables X and Y and constants a and b, and functions f () and g():

1.1 Expectation

Sample counterpart of E(X) is the sample mean x̄ = 1
n ∑n

i=1 xi

• E(aX + bY) = aE(X) + bE(Y)

• E(X + Y) = E(X) + E(Y)

• E(a) = a

• E(XY) = E(X)E(Y) if X and Y are independent

• E(XY) = E(X)E(Y) + Cov(X, Y)

• E(X|Y) = E(X) if X and Y are independent

• E(g(Y) + f (X)) = E(g(Y)) + E( f (X))

• E(g(Y) + f (X) | X) = E(g(Y) | X) + f (X)

1.2 Covariance

Sample counterpart of Cov(X, Y) is the sample covariance sXY = 1
n−1 ∑n

i=1(xi − x̄)(yi − ȳ)

• Cov(X, Y) = E[(X − E(X))(Y − E(Y))] = E(XY)− E(X)E(Y)

• Cov(aX, bY) = abCov(X, Y)

• Cov(X, Y) = 0 if X and Y are independent

• Cov( f (X), g(Y) | X) = 0

• Cov(X, X) = E(X2)− E(X)2 = Var(X)

1.3 Variance

Sample counterpart of Var(X) is the sample variance s2
X = 1

n−1 ∑n
i=1(xi − x̄)2

• Var(X) = E(X2)− E(X)2

• Var(a) = 0

• Var(aX) = a2Var(X)

• Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

• Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y)

• Var(g(Y) + f (X)) = Var(g(Y)) + Var( f (X)) + 2Cov(g(Y), f (X))

• Var(g(Y) + f (X) | X) = Var(g(Y) | X)
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Sample Identity Population Counterpart
∑(xi − x̄) = 0 E(X − E(X)) = 0

∑(xi − x̄)2 = ∑ x2
i − nx̄2 E((X − E(X))2) = E(X2)− (E(X))2

∑(xi − x̄)(yi − ȳ) = ∑ xi(yi − ȳ) =
∑ yi(xi − x̄)

E((X − E(X))(Y − E(Y))) = E(X(Y − E(Y))) =
E(Y(X − E(X)))

Table 1: Sample identities and their population counterparts

• Law of Iterated Expectations: E(X) = E(E(X|Y))

• Law of Large Numbers: As n → ∞, x̄ → E(X)

• Variance Decomposition Formula: Var(X) = E(Var(X|Y)) + Var(E(X|Y))

2 Simple Linear Regressions

Population model: yi = β0 + β1xi + ui

2.1 Assumptions SLR 1- 5

• SLR 1: Linearity: In the population model, the dependent variable, y, is related to the independent variable, x, and
the error (or disturbance), u, as: y = β0 + β1x + u where β0 and β1 are the population intercept and slope parameters,
respectively.

• SLR 2: Random sampling: We have a random sample of size n,{(xi, yi) : i = 1, 2, . . . , n} from the population model

• SLR 3: Sample variation in X: The sample explanatory x variable, namely, xi , i ∈ {1, · · · , n} , are not all the same
value V̂ar(xi) > 0

• SLR 4: Zero conditional mean: The error u has an expected value of zero given any value of the explanatory variable.
In other words, E(ui | xi) = 0

• SLR 5: Homoskedasticity: The error u has the same variance given any value of the explanatory variable. In other
words, Var(ui | xi) = σ2

2.2 OLS Estimates

The OLS estimates are β̂0 and β̂1 that minimize the sum of squared residuals, ∑n
i=1 û2

i = ∑n
i=1

(
yi − β̂0 − β̂1xi

)2

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 =
sxy

sxx
and β̂0 = ȳ − β̂1 x̄

where x̄ = 1
n ∑n

i=1 xi, ȳ = 1
n ∑n

i=1 yi, sxy = 1
n−1 ∑n

i=1(xi − x̄)(yi − ȳ), and sxx = 1
n−1 ∑n

i=1(xi − x̄)2.
In class we showed that, we can also write β̂1 as:

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 =
∑n

i=1(xi − x̄)yi

∑n
i=1(xi − x̄)2

2.3 Theorems

2.3.1 Unbiasedness of the OLS estimator

Under Assumptions SLR. 1 through SLR.4, β̂0 is unbiased for β0, and β̂1 is unbiased for β1. That is,

E
(

β̂0
)
= β0 and E

(
β̂1

)
= β1
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2.3.2 Variance of the OLS estimator

Denote σ2 as the Var(ui). Under Assumptions SLR. 1 through SLR.5,

Var
(

β̂1
)
=

σ2

∑n
i=1 (xi − x̄)2 =

σ2

SSTx
, and Var

(
β̂0

)
=

σ2 1
n ∑n

i=1 x2
i

∑n
i=1 (xi − x̄)2 =

σ2 1
n ∑n

i=1 x2
i

SSTx

where these are conditional on the sample values {x1, . . . , xn} and SSTx = ∑n
i=1 (xi − x̄)2.

2.3.3 Unbiased estimate of σ2

Under Assumptions SLR.1 through SLR.5, E
(
σ̂2) = σ2, where σ̂2 = 1

n−2 ∑n
i=1 û2

i , and ûi = yi − β̂0 − β̂1xi

2.4 Standard errors of the OLS estimates

The standard error of the OLS estimate on the slope β̂1 is given by:

se(β̂1) =
√

Var(β̂1) =

√
σ̂2

SSTx

3 Multiple Linear Regressions

Population model: yi = β0 + β1x1i + β2x2i + . . . + βkxki + ui

3.1 Assumptions MLR 1-6

• MLR 1: Linearity: The population model is linear in the parameters: y = β0 + β1x1 + β2x2 + . . . + βkxk + u

• MLR 2: Random sampling: We have a random sample of size n,{(x1i, x2i, . . . , xki, yi) : i = 1, 2, . . . , n} from the popu-
lation model

• MLR 3: No perfect multicollinearity: The explanatory variables are not perfectly collinear, i.e., there are no exact linear
relationships among the explanatory variables.

• MLR 4: Zero conditional mean: The error u has an expected value of zero given any values of the explanatory variables.
In other words, E(ui | x1i, x2i, . . . , xki) = 0

• MLR 5: Homoskedasticity: The error u has the same variance given any values of the explanatory variables. In other
words, Var(ui | x1i, x2i, . . . , xki) = σ2

• MLR 6: Normality: The error term ui is normally distributed given any values of the explanatory variables.

3.2 OLS Estimates

The OLS estimates are β̂0, β̂1, . . . , β̂k that minimize the sum of squared residuals, ∑n
i=1 û2

i = ∑n
i=1

(
yi − β̂0 − β̂1x1i − . . . − β̂kxki

)2

3.3 Theorems

3.3.1 Unbiasedness of the OLS estimator

Under Assumptions MLR. 1 - MLR.4, β̂0 is unbiased for β0, and β̂1, . . . , β̂k are unbiased for β1, . . . , βk. That is,

E
(

β̂0
)
= β0, E

(
β̂1

)
= β1, . . . , E

(
β̂k
)
= βk
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3.3.2 Variance of the OLS estimator

Under assumptions MLR.1 - MLR.5, the sampling variance of the OLS estimate on the jth coefficient β̂ j is given by:

Var(β̂ j) =
σ2

(1 − R2
j )

n

∑
i=1

(xji − x̄j)
2

︸ ︷︷ ︸
SSTxj

=
σ2

(1 − R2
j )SSTxj

for j = 0, 1, . . . , k. where:

• these are conditional on the sample values {x1i, x2i, . . . , xki}

• σ2 is the variance of the error term ui conditional on the independent variables

• x̄j is the sample mean of xji

• ∑n
i=1(xji − x̄j)

2 is the total sample variance of xji

• R2
j is the R2 from regressing xji on all other independent variables and an intercept.

3.3.3 Unbiased estimate of σ2

Under Assumptions MLR.1 - MLR.5, E
(
σ̂2) = σ2, where σ̂2 = 1

n−k−1 ∑n
i=1 û2

i , and ûi = yi − β̂0 − β̂1x1i − . . . − β̂kxki

3.4 Standard errors of the OLS estimates

The standard error of the OLS estimate on the jth coefficient β̂ j is given by:

se(β̂ j) =
√

Var(β̂ j) =

√
σ̂2

(1 − R2
j )SSTxj

3.5 Ommited Variable Bias

• For the true population model satisfying MLR1-MLR4:

yi = β0 + β1x1i + β2x2i + ui

• Suppose we omitted x2i and only ran the simple regression of yi on x1i:

yi = β̃0 + β̃1x1i

• β̃1 relates to β̂1 via:
β̃1 = β̂1 + β̂2δ1

where δ1 is the slope from the regression of x2i on x1i from estimating:

x2i = δ0 + δ1x1i + ϵi

• So E(β̃1) = β1 + β2δ1.

• Bias = E(β̃1)− β1 = β2δ1

4 Inference

Central Limit Theorem (CLT): Let {X1, X2, . . . , Xn} be a random sample of size n from a population with mean µ and
variance σ2. Then, as n approaches infinity, the distribution of sample means is a normal distribution. i.e., X̄ ∼ N(µ, σ2/n)
so that X̄−µ

σ/
√

n ∼ N(0, 1)
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4.1 Single coefficient hypothesis test

Under the null hypothesis H0 : β j = b, the test statistic is

t =
β̂ j − b

se(β̂ j)

• The (1 − α) CI for β j: β̂ j ± t∗α/2se(β̂ j) where t∗α/2 is the critical value of the t-distribution at the α/2 level.

• As sample size becomes large t distribution converges to standard normal distribution.

• Table for critical t-values in large samples for two-tailed tests at various significance levels α:

Significance level 0.10 0.05 0.025 0.01 0.005 0.001

Critical value 1.645 1.96 2.576 2.807 3.291 3.922

4.2 Multiple coefficient hypothesis test

Testing q restrictions, under the null hypothesis H0 : β j1 = . . . = β jq = 0, the test statistic is

F =
SSRUR − SSRR

q

/
SSRR

n − k − 1
=

(R2
UR − R2

R)/q
(1 − R2

UR)/(n − k − 1)

where subscripts UR and R represent the unrestricted and restricted model respectively, n− k− 1 are the degrees of freedom
of the UR model, and SSR represents the sum of squared residuals.

4.3 Rejection rules at a given α level

- If test statistic is higher* than the critical value (careful on one sided tests)
- If p-value is lower than the significance level
- If the confidence interval does not contain the null hypothesis value

5 Variants on MLR

Not much formulae to give here. Study slides.

6 Potential Outcomes Framework

• Treatment Di for each unit i with observed outcome Yi

• We observe only one of the two potential outcomes Yi(0) or Yi(1)

E [Yi | Di = 1]− E [Yi | Di = 0]︸ ︷︷ ︸
Observed difference in avg outcomes

= E [Yi(1) | Di = 1]− E [Yi(0) | Di = 0]

= E [Yi(1) | Di = 1]−E [Yi(0) | Di = 1]︸ ︷︷ ︸
average treatment effect on the treated

+E [Yi(0) | Di = 1]− E [Yi(0) | Di = 0]︸ ︷︷ ︸
selection bias

7 Randomized Control Trials

• Random assignment of Di =⇒ E[Yi(0) | Di = 1, Xi] = E[Yi(0) | Di = 0, Xi] because Di |= (Yi(1), Yi(0)) | Xi

• E(εi|Di) = 0 =⇒ cov(Di, εi) = 0

• Bunch of things to worry about and take care of while designing a RCT:

– Sample size

– Stratified randomization: Balance of covariates

– Spillover effects
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8 Instrumental Variables, 2SLS and heterogeneous treatment effects

Failure of MLR 4: E(εi|Di) ̸= 0 =⇒ cov(Di, εi) ̸= 0: Di is endogenous.

β̂1
OLS

= ĉov(Yi ,Di)
v̂ar(Di)

will be biased & inconsistent when Di is endogenous

Valid IV Zi satisfies:

• cov(Zi, Di) ̸= 0 (IV relevance) : testable

• cov(Zi, εi) = 0 (IV exogeneity) : non-testable

Structural equation: Yi = β0 + β1Di + εi

First stage: Di = θ0 + θ1Zi + ui

Reduced form: Yi = Π0 + Π1Zi + ei

Zi Di Yi

ϵi

θ1 β1

Π1

β̂ IV =
Π̂1

θ̂1
= ĉov(Yi ,Zi)

ĉov(Zi ,Di)

With binary treatment and outcome this boils down to the Wald estimator:

β̂ IV =
Π̂1

θ̂1
=

Ê(Yi|Zi = 1)− Ê(Yi|Zi = 0)

P̂r(Di = 1|Zi = 1)− P̂r(Di = 1|Zi = 0)

Weak IV:
Asymptotics, as N → ∞,

β̂ IV → β1 +
cov(zi, ϵi)

cov(zi, Di)

β̂OLS → β1 +
cov(Di, ϵi)

cov(Di, Di)

The ratio of the asymptotic bias of IV to that of OLS equals

cov(zi, ϵi)cov(zi, Di)

cov(Di, ϵi)cov(Di, Di)
=

ρzϵ

ρDϵρzD

2SLS estimator:

• Structural equation:

y = β0 + β1x1,i + ... + βKxK,i + βDDi︸︷︷︸
endogenous variable

+ εi

• First stage: regress the endogenous variable on all the exogenous covariates

Di = δ0 + δ1x1,i + ... + δKxK,i + θZi + ui

• Generate predicted values of the endogenous variable:

D̂i = δ̂0 + δ̂1x1,i + ... + δ̂KxK,i + θ̂Zi
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• The variance of the 2SLS estimator for the coefficient on Di is:

Var(β̂2SLS) =
σ̂2/(n − K)

R2
D,Z · (1 − R2

D,X) · ∑n
i=1(Di − D̄)2

– R2
D,Z is the partial R2 from the first stage after controlling for exogenous covariates X

– R2
D,X is the R2 from regressing D on exogenous covariates X

– σ̂2 is the estimated residual variance from the second stage regression

Multiple IVs (and multiple endogenous variables):

• Each IV must separately satisfy relevance and exogeneity

• No IV can be a linear combination of the others

• The number of IVs must be at least as many as the number of endogenous variables

Heterogeneous treatment effects:

• We can express both the numerator and denominator of IV estimator using the four groups and their potential out-
comes {Yi(0), Yi(1)}

Groups Z = 0 Z = 1
Never takers (NT) D = 0 D = 0
Defiers (DF) D = 1 D = 0
Compliers (C) D = 0 D = 1
Always takers (AT) D = 1 D = 1

• IV identifies and estimates the Local Average Treatment Effect (LATE) which is the ATE for the compliers (C):

LATE = E[Yi(1)− Yi(0) | C]

• In addition to exogeneity:

– The first assumption needed is of monotonicity (capturing relevance):

* The IV can only increase or only decrease the prob. of participation for all units
- Pr (Di = 1 | Zi = 1) > Pr (Di = 1 | Zi = 0)
- It means that Pr(DF) = 0.

– The second assumption is that there are some compliers, Pr(C) > 0
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