Summary of Introduction to Econometrics
Prof. Alam

1 Population concepts

For random variables X and Y and constants a and b, and functions f() and g():

1.1 Expectation

Sample counterpart of E(X) is the sample mean ¥ = 1 g X
e E(aX+bY) =aE(X) +bE(Y)
e E(X+Y)=E(X)+E(Y)

(
(
* E(a) =
e E(XY) =E(X)E(Y) if X and Y are independent
e E(XY)=E(X)E(Y)+Cov(X,Y)
e E(X|Y) = E(X) if X and Y are independent
* E(g(Y)+ f(X)) = E(g(Y)) + E(f(X))
* E(g(Y)+ f(X) | X) = E(g(Y) | X) + f(X)

1.2 Covariance
Sample counterpart of Cov(X, Y) is the sample covariance sxy = 7 Y/"; (x; — %) (y; — 7)
* Cov(X,Y) = E[(X — E(X))(Y = E(Y))] = E(XY) — E(X)E(Y)

ov(aX,bY) = abCov(X,Y)

= 0if X and Y are independent
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1.3 Variance

Sample counterpart of Var(X) is the sample variance s3 = 15 Y1 ; (x; — )?
e Var(X) = E(X?) — E(X)?
e Var(a) =0
e Var(aX) = a’*Var(X)



Sample Identity

Population Counterpart

Y(xi—%x)=0

Y(x; — %)? = L a7 — n@?

Y(xi — %) (yi — 7)
Yyi(xi — %)

Yxi(yi —9)

E(X—E(X)) =0

E((X — E(X))(Y — E(Y)))
E(Y(X - E(X)))

E((X - E(X))?) = E(X?) — (E(X))?

Table 1: Sample identities and their population counterparts

e Law of Iterated Expectations: E(X) = E(E(X|Y))

e Law of Large Numbers: Asn — oo, ¥ — E(X)

e Variance Decomposition Formula: Var(X) = E(Var(X|Y)) + Var(E(X|Y))

2 Simple Linear Regressions

Population model: y; = Bo + B1x; + u;

2.1 Assumptions SLR 1-5

e SLR 1: Linearity: In the population model, the dependent variable, y, is related to the independent variable, x, and
the error (or disturbance), u, as: y = Bo + B1x + u where By and B; are the population intercept and slope parameters,

respectively.

e SLR 2: Random sampling: We have a random sample of size n,{(x;,y;) : i = 1,2,...,n} from the population model

e SLR 3: Sample variation in X: The sample explanatory x variable, namely, x; , i € {1,---,n} , are not all the same

value Var(x;) > 0

e SLR 4: Zero conditional mean: The error u has an expected value of zero given any value of the explanatory variable.

In other words, E(u; | x;) =0

* SLR 5: Homoskedasticity: The error u has the same variance given any value of the explanatory variable. In other

words, Var(u; | x;) = o?

2.2 OLS Estimates

The OLS estimates are 3p and ; that minimize the sum of squared residuals, Y"1

Yimq (x; —
Z?:1 (x; — f)z
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In class we showed that, we can also write .Bl as:

2.3 Theorems

P

P =

2.3.1 Unbiasedness of the OLS estimator

Y —%)(vi—7)  Yi(xi— Xy,
Y (x — %)? Ly (x —%)?

A2 _
a5 =

Yy (vi — Bo— Pix)’

and fo=7—pi%

Under Assumptions SLR. 1 through SLR 4, f is unbiased for B, and f; is unbiased for B1. That is,

E (Bo) = Boand E (B1) = B



2.3.2 Variance of the OLS estimator
Denote o2 as the Var(u;). Under Assumptions SLR. 1 through SLR.5,

. o2 o2 A o2lym 2 g2lyn
Var = = , and Var (fBg) = =i - i1 4
#) Ty (x -7 STy (Fo Y (v — %) ST
where these are conditional on the sample values {x1,...,x,} and SST, = Y_1" ; (x; — )2

2.3.3 Unbiased estimate of ¢?

Under Assumptions SLR.1 through SLR.5, E (62) = 02, where 0% = L5 Y | #?,and i; = y; — Bo — P1x;

2.4 Standard errors of the OLS estimates

The standard error of the OLS estimate on the slope $ is given by:

” ~ 02
se(B1) = £/ Var(p1) = SST,

3 Multiple Linear Regressions

Population model: y; = Bo + B1x1; + Baxoi + ... + BrXyi + U;

3.1 Assumptions MLR 1-6
e MLR 1: Linearity: The population model is linear in the parameters: y = B + B1x1 + Bax2 + ... + Brxp + u

e MLR 2: Random sampling: We have a random sample of size n,{(x1;, X2;,..., Xk, y;) : i = 1,2,...,n} from the popu-
lation model

¢ MLR 3: No perfect multicollinearity: The explanatory variables are not perfectly collinear, i.e., there are no exact linear
relationships among the explanatory variables.

* MLR4: Zero conditional mean: The error u has an expected value of zero given any values of the explanatory variables.
In other words, E(u; | x1;, X2, ..., %) =0

e MLR 5: Homoskedasticity: The error u has the same variance given any values of the explanatory variables. In other

words, Var(u; | x1;, X, ..., Xki) = o

e MLR 6: Normality: The error term u; is normally distributed given any values of the explanatory variables.

3.2 OLS Estimates

. A A A A 2
The OLS estimates are Sy, 1, . - ﬁk that minimize the sum of squared residuals, } ;! ; u =Y, (yi —Bo—P1x1i—...— ,kak,-)

3.3 Theorems
3.3.1 Unbiasedness of the OLS estimator
Under Assumptions MLR. 1 - MLR 4, .BO is unbiased for By, and 31,. ., ,Bk are unbiased for 1, ..., Br. Thatis,

E (o) =Bo, E(B1) =PB1,--- B (Br) = Bk



3.3.2 Variance of the OLS estimator

Under assumptions MLR.1 - MLR.5, the sampling variance of the OLS estimate on the j* coefficient 3 j is given by:

A 0_2 02
Var(B;) = u _ 2
(1—R?) Y- (xi — %))° (1-R5)SSTy,
i\Lf—’
SSTXJ.

forj=0,1,...,k where:
e these are conditional on the sample values {x1;, xp;, ..., Xk }
* o2 is the variance of the error term u; conditional on the independent variables

* ¥; is the sample mean of x;;

Yz (xji — JZj)z is the total sample variance of x;;

RJZ is the R? from regressing xj; on all other independent variables and an intercept.

3.3.3 Unbiased estimate of 02

Under Assumptions MLR.1 - MLR.5, E (6%) = 02, where 02 = —— Y 0%, and il = y; — Bo — Brx1i — ... — Prxgi

3.4 Standard errors of the OLS estimates

The standard error of the OLS estimate on the j* coefficient 8 j is given by:

A _ 52
selfy) = Var(B) =\ | T gssto
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3.5 Ommited Variable Bias
For the true population model satisfying MLR1-MLR4:

Yi = Po + Prxui + Paxai + 1
¢ Suppose we omitted xp; and only ran the simple regression of y; on x;:

yi = Bo + P1xy

B relates to f; via: y
p1 = p1+ P20
where ¢ is the slope from the regression of x,; on x1; from estimating:

Xp; = &g+ d1x1; + €;

So E(,Bl) = B1 + B291.
Bias = E(B1) — B1 = B2d1

4 Inference

Central Limit Theorem (CLT): Let {X;, X»,..., X} be a random sample of size n from a population with mean y and
variance 0. Then, as n approaches infinity, the distribution of sample means is a normal distribution. i.e., X ~ N(u,c?/n)

X—p
so that o7~ N(0,1)




4.1 Single coefficient hypothesis test
Under the null hypothesis Hp : §; = b, the test statistic is

A

bt
se(Bj)

* The (1 —a) CIfor g;: B j by jpse( B j) where t} , is the critical value of the t-distribution at the a/2 level.

* Assample size becomes large t distribution converges to standard normal distribution.

* Table for critical t-values in large samples for two-tailed tests at various significance levels a:

Significancelevel 0.10 0.05 0.025 0.01 0.005 0.001
Critical value 1.645 196 2576 2807 3291 3.922

4.2 Multiple coefficient hypothesis test

Testing g restrictions, under the null hypothesis Hy : fj, = ... = B;, = 0, the test statistic is
r— SSRur — SSRR/ SSRr _ (Ryp—RR)/q
q n—k—-1 (1-R}g)/(n—k—-1)

where subscripts UR and R represent the unrestricted and restricted model respectively, n — k — 1 are the degrees of freedom
of the UR model, and SSR represents the sum of squared residuals.

4.3 Rejection rules at a given « level

- If test statistic is higher* than the critical value (careful on one sided tests)
- If p-value is lower than the significance level
- If the confidence interval does not contain the null hypothesis value

5 Variants on MLR

Not much formulae to give here. Study slides.

6 Potential Outcomes Framework
e Treatment D; for each unit i with observed outcome Y;
e We observe only one of the two potential outcomes Y;(0) or Y;(1)

ENY; |Di=1]—E[Y;|D;=0] = E[Y;(1) | D; =1] = E[Y;(0) | D; = 0]

Observed difference in avg outcomes

=E[Y;(1) [ D;=1] -E[Y;(0) | D; = 1] +E[Y;(0) | D; = 1] — E[Y;(0) | D; = 0]

average treatment effect on the treated selection bias

7 Randomized Control Trials
e Random assignment of D; = E[Y;(0) | D; = 1,X;] = E[Y;(0) | D; = 0, X;] because D; Il (Y;(1),Y;(0)) | X;
* E(¢|D;) =0 = cov(D;, &) =0
¢ Bunch of things to worry about and take care of while designing a RCT:

— Sample size
— Stratified randomization: Balance of covariates

— Spillover effects



8 Instrumental Variables, 2SLS and heterogeneous treatment effects

Failure of MLR 4: E(¢;|D;) # 0 = cov(Dj, ¢;) # 0: D; is endogenous.
B}OLS _ cou(Y;,D;)

aar(D;) will be biased & inconsistent when D; is endogenous

Valid IV Z; satisfies:
* cov(Z;, D;) # 0 (IV relevance) : testable

e cov(Z;,¢;) = 0 (IV exogeneity) : non-testable

Ty
Structural equation: Y; = Bo+ B1D; +¢; LTI T
. 6 By
First stage: D; = 09+ 61Z; + u; Z; D; Y;
Reduced form: Y; =TIy +111Z; +e;
€i

By = I @,z
V= 5"~ &o(z,D;)

1
With binary treatment and outcome this boils down to the Wald estimator:

,B\IV:E: E(Yi|Zi = 1) — E(Yi|Zi = 0)
91 PT’(Dl’ = 1|ZZ = 1) - P?’(Di = 1|ZZ = 0)
Weak IV:
Asymptotics, as N — oo,
= cov(z;, €;)
Prv = P+ cov(z;, D;)

— cov(D;, €;)
% _
Pors = P+ cov(D;, D;)

The ratio of the asymptotic bias of IV to that of OLS equals

cov(z;, €;)cov(z;, D;) _ Pz
cov(Dj, €;)cov(D;, D;)  PpepzD

2SLS estimator:

¢ Structural equation:

y = Bo + P1x1,; + ... + Brxk,i + BpD; + &

endogenous variable

¢ First stage: regress the endogenous variable on all the exogenous covariates
D; = 09+ 61x1,; + ... +0xxg i +0Z; + u;

¢ Generate predicted values of the endogenous variable:

ﬁi = 5A() + &xu + ...+ ngK,i + @Zi



¢ The variance of the 2SLS estimator for the coefficient on D; is:

52
A </ (n—K)
Var(Basrs) = =
R%),Z (11— R%),x) ) ?:1(Di - D)z

- R%D,Z is the partial R? from the first stage after controlling for exogenous covariates X
- R%,X is the R? from regressing D on exogenous covariates X
— 02 is the estimated residual variance from the second stage regression
Multiple IVs (and multiple endogenous variables):
* Each IV must separately satisfy relevance and exogeneity
* No IV can be a linear combination of the others
® The number of IVs must be at least as many as the number of endogenous variables
Heterogeneous treatment effects:

* We can express both the numerator and denominator of IV estimator using the four groups and their potential out-
comes {Y;(0),Y;(1)}

Groups | Zz=0]Z=1
Never takers (NT) D=0| D=0
Defiers (DF) D=1| D=0
Compliers (C) D=0|D=1
Always takers (AT) | D=1 | D=1

¢ IV identifies and estimates the Local Average Treatment Effect (LATE) which is the ATE for the compliers (C):

LATE = E[Y;(1) — Y;(0) | C]

¢ In addition to exogeneity:

— The first assumption needed is of monotonicity (capturing relevance):

* The IV can only increase or only decrease the prob. of participation for all units
- PI‘(D,':1|Zi:1)>Pr(Di:1‘Zi:0)
- It means that Pr(DF) = 0.

— The second assumption is that there are some compliers, Pr(C) > 0



