Summary of Introduction to Econometrics Prof. Alam

1 Population concepts

For random variables X and Y and constants a and b, and functions f() and g():

1.1 Expectation

Sample counterpart of E(X) is the sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

- E(aX + bY) = aE(X) + bE(Y)
- E(X+Y) = E(X) + E(Y)
- E(a) = a
- E(XY) = E(X)E(Y) if X and Y are independent
- E(XY) = E(X)E(Y) + Cov(X, Y)
- E(X|Y) = E(X) if X and Y are independent
- E(g(Y) + f(X)) = E(g(Y)) + E(f(X))
- E(g(Y) + f(X) | X) = E(g(Y) | X) + f(X)

1.2 Covariance

Sample counterpart of Cov(X,Y) is the sample covariance $s_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$

- Cov(X,Y) = E[(X E(X))(Y E(Y))] = E(XY) E(X)E(Y)
- Cov(aX, bY) = abCov(X, Y)
- Cov(X, Y) = 0 if X and Y are independent
- Cov(f(X), g(Y) | X) = 0
- $Cov(X, X) = E(X^2) E(X)^2 = Var(X)$

1.3 Variance

Sample counterpart of Var(X) is the sample variance $s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$

- $Var(X) = E(X^2) E(X)^2$
- Var(a) = 0
- $Var(aX) = a^2Var(X)$
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
- $\operatorname{Var}(aX + bY) = a^{2}\operatorname{Var}(X) + b^{2}\operatorname{Var}(Y) + 2ab\operatorname{Cov}(X, Y)$
- Var(g(Y) + f(X)) = Var(g(Y)) + Var(f(X)) + 2Cov(g(Y), f(X))
- $Var(g(Y) + f(X) \mid X) = Var(g(Y) \mid X)$

Sample Identity	Population Counterpart
$\sum (x_i - \bar{x}) = 0$	E(X - E(X)) = 0
$\sum (x_i - \bar{x})^2 = \sum x_i^2 - n\bar{x}^2$	$E((X - E(X))^{2}) = E(X^{2}) - (E(X))^{2}$
$\begin{array}{rcl} \sum (x_i - \bar{x})(y_i - \bar{y}) & = & \sum x_i(y_i - \bar{y}) \\ \sum y_i(x_i - \bar{x}) & \end{array}$	E((X - E(X))(Y - E(Y))) = E(X(Y - E(Y))) = E(Y(X - E(X)))

Table 1: Sample identities and their population counterparts

- Law of Iterated Expectations: E(X) = E(E(X|Y))
- Law of Large Numbers: As $n \to \infty$, $\bar{x} \to E(X)$
- Variance Decomposition Formula: Var(X) = E(Var(X|Y)) + Var(E(X|Y))

2 Simple Linear Regressions

Population model: $y_i = \beta_0 + \beta_1 x_i + u_i$

2.1 Assumptions SLR 1-5

- SLR 1: Linearity: In the population model, the dependent variable, y, is related to the independent variable, x, and the error (or disturbance), u, as: $y = \beta_0 + \beta_1 x + u$ where β_0 and β_1 are the population intercept and slope parameters, respectively.
- SLR 2: Random sampling: We have a random sample of size n, $\{(x_i, y_i) : i = 1, 2, ..., n\}$ from the population model
- SLR 3: Sample variation in X: The sample explanatory x variable, namely, x_i , $i \in \{1, \dots, n\}$, are not all the same value $\widehat{Var}(x_i) > 0$
- SLR 4: Zero conditional mean: The error u has an expected value of zero given any value of the explanatory variable. In other words, $E(u_i \mid x_i) = 0$
- SLR 5: Homoskedasticity: The error u has the same variance given any value of the explanatory variable. In other words, $Var(u_i \mid x_i) = \sigma^2$

2.2 OLS Estimates

The OLS estimates are $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize the sum of squared residuals, $\sum_{i=1}^n \hat{u}_i^2 = \sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right)^2$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{s_{xy}}{s_{xx}} \quad \text{and} \quad \hat{\beta_0} = \bar{y} - \hat{\beta}_1 \bar{x}$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$, and $s_{xx} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$. In class we showed that, we can also write $\hat{\beta}_1$ as:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

2.3 Theorems

2.3.1 Unbiasedness of the OLS estimator

Under Assumptions SLR. 1 through SLR.4, $\hat{\beta}_0$ is unbiased for β_0 , and $\hat{\beta}_1$ is unbiased for β_1 . That is,

$$E(\hat{\beta}_0) = \beta_0$$
 and $E(\hat{\beta}_1) = \beta_1$

2.3.2 Variance of the OLS estimator

Denote σ^2 as the $Var(u_i)$. Under Assumptions SLR. 1 through SLR.5,

$$\operatorname{Var}(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sigma^{2}}{\operatorname{SST}_{x}}, \quad \text{and} \quad \operatorname{Var}(\hat{\beta}_{0}) = \frac{\sigma^{2} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sigma^{2} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}{\operatorname{SST}_{x}}$$

where these are conditional on the sample values $\{x_1, \ldots, x_n\}$ and $SST_x = \sum_{i=1}^n (x_i - \bar{x})^2$.

2.3.3 Unbiased estimate of σ^2

Under Assumptions SLR.1 through SLR.5, E $(\hat{\sigma}^2) = \sigma^2$, where $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{u}_i^2$, and $\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$

2.4 Standard errors of the OLS estimates

The standard error of the OLS estimate on the slope $\hat{\beta}_1$ is given by:

$$se(\hat{\beta}_1) = \sqrt{Var(\hat{\beta}_1)} = \sqrt{\frac{\hat{\sigma}^2}{SST_x}}$$

3 Multiple Linear Regressions

Population model: $y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_k x_{ki} + u_i$

3.1 Assumptions MLR 1-6

- MLR 1: Linearity: The population model is linear in the parameters: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$
- MLR 2: Random sampling: We have a random sample of size n, $\{(x_{1i}, x_{2i}, ..., x_{ki}, y_i) : i = 1, 2, ..., n\}$ from the population model
- MLR 3: No perfect multicollinearity: The explanatory variables are not perfectly collinear, i.e., there are no exact linear relationships among the explanatory variables.
- MLR 4: Zero conditional mean: The error u has an expected value of zero given any values of the explanatory variables. In other words, $E(u_i \mid x_{1i}, x_{2i}, \dots, x_{ki}) = 0$
- MLR 5: Homoskedasticity: The error u has the same variance given any values of the explanatory variables. In other words, $Var(u_i \mid x_{1i}, x_{2i}, ..., x_{ki}) = \sigma^2$
- MLR 6: Normality: The error term u_i is normally distributed given any values of the explanatory variables.

3.2 OLS Estimates

The OLS estimates are $\hat{\beta}_0$, $\hat{\beta}_1$, ..., $\hat{\beta}_k$ that minimize the sum of squared residuals, $\sum_{i=1}^n \hat{u}_i^2 = \sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki}\right)^2$

3.3 Theorems

3.3.1 Unbiasedness of the OLS estimator

Under Assumptions MLR. 1 - MLR.4, $\hat{\beta}_0$ is unbiased for β_0 , and $\hat{\beta}_1, \dots, \hat{\beta}_k$ are unbiased for β_1, \dots, β_k . That is,

$$E(\hat{\beta}_0) = \beta_0$$
, $E(\hat{\beta}_1) = \beta_1$,..., $E(\hat{\beta}_k) = \beta_k$

3

3.3.2 Variance of the OLS estimator

Under assumptions MLR.1 - MLR.5, the sampling variance of the OLS estimate on the j^{th} coefficient $\hat{\beta}_j$ is given by:

$$Var(\hat{\beta}_{j}) = \frac{\sigma^{2}}{(1 - R_{j}^{2}) \sum_{i=1}^{n} (x_{ji} - \bar{x}_{j})^{2}} = \frac{\sigma^{2}}{(1 - R_{j}^{2})SST_{x_{j}}}$$

for j = 0, 1, ..., k. where:

- these are conditional on the sample values $\{x_{1i}, x_{2i}, \dots, x_{ki}\}$
- σ^2 is the variance of the error term u_i conditional on the independent variables
- \bar{x}_i is the sample mean of x_{ii}
- $\sum_{i=1}^{n} (x_{ji} \bar{x}_{j})^2$ is the total sample variance of x_{ji}
- R_i^2 is the R^2 from regressing x_{ii} on all other independent variables and an intercept.

3.3.3 Unbiased estimate of σ^2

Under Assumptions MLR.1 - MLR.5, $E(\hat{\sigma}^2) = \sigma^2$, where $\hat{\sigma}^2 = \frac{1}{n-k-1} \sum_{i=1}^n \hat{u}_i^2$, and $\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_k x_{ki}$

3.4 Standard errors of the OLS estimates

The standard error of the OLS estimate on the j^{th} coefficient $\hat{\beta}_i$ is given by:

$$se(\hat{\beta}_j) = \sqrt{Var(\hat{\beta}_j)} = \sqrt{\frac{\hat{\sigma}^2}{(1 - R_j^2)SST_{x_j}}}$$

3.5 Ommited Variable Bias

• For the true population model satisfying MLR1-MLR4:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i$$

• Suppose we omitted x_{2i} and only ran the simple regression of y_i on x_{1i} :

$$y_i = \tilde{\beta}_0 + \tilde{\beta}_1 x_{1i}$$

• $\tilde{\beta}_1$ relates to $\hat{\beta}_1$ via:

$$\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \delta_1$$

where δ_1 is the slope from the regression of x_{2i} on x_{1i} from estimating:

$$x_{2i} = \delta_0 + \delta_1 x_{1i} + \epsilon_i$$

- So $E(\tilde{\beta}_1) = \beta_1 + \beta_2 \delta_1$.
- Bias = $E(\tilde{\beta}_1) \beta_1 = \beta_2 \delta_1$

4 Inference

Central Limit Theorem (CLT): Let $\{X_1, X_2, ..., X_n\}$ be a random sample of size n from a population with mean μ and variance σ^2 . Then, as n approaches infinity, the distribution of sample means is a normal distribution. i.e., $\bar{X} \sim N(\mu, \sigma^2/n)$ so that $\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$

4.1 Single coefficient hypothesis test

Under the null hypothesis $H_0: \beta_j = b$, the test statistic is

$$t = \frac{\hat{\beta}_j - b}{se(\hat{\beta}_j)}$$

- The (1α) CI for β_j : $\hat{\beta}_j \pm t_{\alpha/2}^* se(\hat{\beta}_j)$ where $t_{\alpha/2}^*$ is the critical value of the t-distribution at the $\alpha/2$ level.
- As sample size becomes large t distribution converges to standard normal distribution.
- Table for critical t-values in large samples for two-tailed tests at various significance levels α :

Significance level	0.10	0.05	0.025	0.01	0.005	0.001
Critical value	1.645	1.96	2.576	2.807	3.291	3.922

4.2 Multiple coefficient hypothesis test

Testing *q* restrictions, under the null hypothesis $H_0: \beta_{j_1} = \ldots = \beta_{j_q} = 0$, the test statistic is

$$F = \frac{SSR_{UR} - SSR_R}{q} / \frac{SSR_R}{n - k - 1} = \frac{(R_{UR}^2 - R_R^2)/q}{(1 - R_{UR}^2)/(n - k - 1)}$$

where subscripts UR and R represent the unrestricted and restricted model respectively, n - k - 1 are the degrees of freedom of the UR model, and SSR represents the sum of squared residuals.

4.3 Rejection rules at a given α level

- If test statistic is higher* than the critical value (careful on one sided tests)
- If p-value is lower than the significance level
- If the confidence interval does not contain the null hypothesis value

5 Variants on MLR

Not much formulae to give here. Study slides.

6 Potential Outcomes Framework

- Treatment D_i for each unit i with observed outcome Y_i
- We observe only one of the two **potential outcomes** $Y_i(0)$ or $Y_i(1)$

$$\underbrace{E\left[Y_{i}\mid D_{i}=1\right]-E\left[Y_{i}\mid D_{i}=0\right]}_{\text{Observed difference in avg outcomes}} = \underbrace{E\left[Y_{i}(1)\mid D_{i}=1\right]-E\left[Y_{i}(0)\mid D_{i}=0\right]}_{\text{Evalue of the treated}} = \underbrace{E\left[Y_{i}(1)\mid D_{i}=1\right]-E\left[Y_{i}(0)\mid D_{i}=1\right]}_{\text{average treatment effect on the treated}} + \underbrace{E\left[Y_{i}(0)\mid D_{i}=1\right]-E\left[Y_{i}(0)\mid D_{i}=0\right]}_{\text{everage treatment effect on the treated}}$$

7 Randomized Control Trials

- Random assignment of $D_i \implies E[Y_i(0) \mid D_i = 1, X_i] = E[Y_i(0) \mid D_i = 0, X_i]$ because $D_i \perp \!\!\! \perp (Y_i(1), Y_i(0)) \mid X_i = 0$
- $E(\varepsilon_i|D_i) = 0 \implies cov(D_i, \varepsilon_i) = 0$
- Bunch of things to worry about and take care of while designing a RCT:
 - Sample size
 - Stratified randomization: Balance of covariates
 - Spillover effects

8 Instrumental Variables, 2SLS and heterogeneous treatment effects

Failure of MLR 4: $E(\varepsilon_i|D_i) \neq 0 \implies cov(D_i, \varepsilon_i) \neq 0$: D_i is endogenous. $\widehat{\beta_1}^{OLS} = \frac{\widehat{cov}(Y_i, D_i)}{\widehat{var}(D_i)}$ will be biased & inconsistent when D_i is endogenous

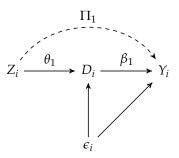
Valid IV Z_i satisfies:

- $cov(Z_i, D_i) \neq 0$ (IV relevance) : testable
- $cov(Z_i, \varepsilon_i) = 0$ (IV exogeneity) : non-testable

Structural equation: $Y_i = \beta_0 + \beta_1 D_i + \varepsilon_i$

First stage: $D_i = \theta_0 + \theta_1 Z_i + u_i$

Reduced form: $Y_i = \Pi_0 + \Pi_1 Z_i + e_i$



$$\widehat{\beta}_{IV} = \frac{\widehat{\Pi}_1}{\widehat{\theta}_1} = \frac{\widehat{cov}(Y_i, Z_i)}{\widehat{cov}(Z_i, D_i)}$$

With binary treatment and outcome this boils down to the Wald estimator:

$$\widehat{\beta}_{IV} = \frac{\widehat{\Pi}_1}{\widehat{\theta}_1} = \frac{\widehat{E}(Y_i|Z_i = 1) - \widehat{E}(Y_i|Z_i = 0)}{\widehat{Pr}(D_i = 1|Z_i = 1) - \widehat{Pr}(D_i = 1|Z_i = 0)}$$

Weak IV:

Asymptotics, as $N \to \infty$,

$$\widehat{\beta}_{IV} \to \beta_1 + \frac{cov(z_i, \epsilon_i)}{cov(z_i, D_i)}$$

$$\widehat{\beta}_{OLS} \to \beta_1 + \frac{cov(D_i, \epsilon_i)}{cov(D_i, D_i)}$$

The ratio of the asymptotic bias of IV to that of OLS equals

$$\frac{cov(z_i, \epsilon_i)cov(z_i, D_i)}{cov(D_i, \epsilon_i)cov(D_i, D_i)} = \frac{\rho_{z\epsilon}}{\rho_{D\epsilon}\rho_{zD}}$$

2SLS estimator:

• Structural equation:

$$y = eta_0 + eta_1 x_{1,i} + ... + eta_K x_{K,i} + eta_D rac{ extsf{D}_i}{ extsf{endogenous variable}} + arepsilon_i$$

• First stage: regress the endogenous variable on all the exogenous covariates

$$D_{i} = \delta_{0} + \delta_{1}x_{1,i} + ... + \delta_{K}x_{K,i} + \theta Z_{i} + u_{i}$$

• Generate predicted values of the endogenous variable:

$$\widehat{D}_{i} = \widehat{\delta}_{0} + \widehat{\delta}_{1} x_{1,i} + \dots + \widehat{\delta}_{K} x_{K,i} + \widehat{\theta} Z_{i}$$

6

• The variance of the 2SLS estimator for the coefficient on D_i is:

$$Var(\hat{\beta}_{2SLS}) = \frac{\hat{\sigma}^2/(n-K)}{R_{D,Z}^2 \cdot (1 - R_{D,X}^2) \cdot \sum_{i=1}^n (D_i - \bar{D})^2}$$

- $R_{D,Z}^2$ is the partial R^2 from the first stage after controlling for exogenous covariates X
- $R_{D,X}^2$ is the R^2 from regressing D on exogenous covariates X
- $\hat{\sigma}^2$ is the estimated residual variance from the second stage regression

Multiple IVs (and multiple endogenous variables):

- Each IV must separately satisfy relevance and exogeneity
- No IV can be a linear combination of the others
- The number of IVs must be at least as many as the number of endogenous variables

Heterogeneous treatment effects:

• We can express both the numerator and denominator of IV estimator using the four groups and their potential outcomes $\{Y_i(0), Y_i(1)\}$

Groups	Z = 0	Z=1
()	D=0	D=0
Defiers (DF)	D=1	D = 0
Compliers (C)	D = 0	D=1
Always takers (AT)	D=1	D=1

• IV identifies and estimates the Local Average Treatment Effect (LATE) which is the ATE for the compliers (C):

LATE =
$$E[Y_i(1) - Y_i(0) | C]$$

- In addition to exogeneity:
 - The first assumption needed is of monotonicity (capturing relevance):
 - * The IV can only increase or only decrease the prob. of participation for all units
 - $Pr(D_i = 1 \mid Z_i = 1) > Pr(D_i = 1 \mid Z_i = 0)$
 - It means that Pr(DF) = 0.
 - The second assumption is that there are some compliers, Pr(C) > 0